This is the core class, that represents the whole Neural Network.
More...
#include <Network.hpp>
|
typedef std::function< std::vector< double >const std::vector< double > &target, const std::vector< double > &out)> | error_func |
|
|
| Network () |
| Creates a new empty network.
|
|
| Network (const std::vector< size_t > &layers, const math::Func &activationFunc, const Layer::weights_initializer &init) |
|
| Network (const std::vector< size_t > &layers, const std::vector< math::Func > &activationFuncs, const Layer::weights_initializer &init) |
|
| Network (const Network &net) |
| Creates a new network equal to an existent one. More...
|
|
Network & | operator= (const Network &rhs) |
| Copy assignment.
|
|
Network & | operator= (Network &&rhs) |
| Move assignment.
|
|
void | setParameters (const sann::parameters &hyperP) |
|
void | setWeights (const std::vector< std::vector< double >> &weights) |
|
void | setWeights (const std::vector< weightsMatrix > &weights) |
|
void | setWeights (std::vector< weightsMatrix > &&weights) |
| Sets the weights for each layer of the network using move semantic. More...
|
|
void | setRandomWeights () |
|
void | setErrorFunction (const error_func &error) |
| Sets a new error function to minimize. This error function accepts in input the target value and the current output and returns the derivative of the error function. More...
|
|
std::vector< weightsMatrix > | getWeights () const |
| Returns a vector with the matrix of weights of each layer. More...
|
|
std::vector< std::size_t > | getlayersSizes () const |
| Returns a vector with the size of each layer. More...
|
|
std::vector< double > | compute (const std::vector< double > &inputs) |
| Computes the result for the given inputs. More...
|
|
void | train (const sann::dataSet &trainingSet, sann::Estimator &est, const sann::parameters &hyperPar) |
| Trains the network using the training set passed as input. More...
|
|
void | train (const sann::dataSet &trainingSet, const sann::dataSet &testSet, sann::Estimator &trainEst, sann::Estimator &testEst, const sann::parameters &hyperPar) |
| Trains the network using the training set passed as input. More...
|
|
This is the core class, that represents the whole Neural Network.
◆ Network()
sann::Network::Network |
( |
const Network & |
net | ) |
|
Creates a new network equal to an existent one.
- Parameters
-
net | - The network to copy. |
◆ compute()
vector< double > sann::Network::compute |
( |
const std::vector< double > & |
inputs | ) |
|
Computes the result for the given inputs.
- Parameters
-
inputs | - The inputs of the network. |
- Returns
- std::vector<double> - The outputs computed by the network.
◆ getlayersSizes()
vector< size_t > sann::Network::getlayersSizes |
( |
| ) |
const |
Returns a vector with the size of each layer.
- Returns
- vector<size_t> - A vector with the size of each layer.
◆ getWeights()
vector< weightsMatrix > sann::Network::getWeights |
( |
| ) |
const |
Returns a vector with the matrix of weights of each layer.
- Returns
- vector<weightsMatrix> - The vector with the weights matrix.
◆ setErrorFunction()
void sann::Network::setErrorFunction |
( |
const error_func & |
error | ) |
|
Sets a new error function to minimize. This error function accepts in input the target value and the current output and returns the derivative of the error function.
- Parameters
-
error | - The error function to minimize. |
◆ setWeights()
void sann::Network::setWeights |
( |
std::vector< weightsMatrix > && |
weights | ) |
|
Sets the weights for each layer of the network using move semantic.
- Parameters
-
weights | - The weights to set. |
◆ train() [1/2]
Trains the network using the training set passed as input.
- Parameters
-
trainingSet | - The training set. |
est | - The Estimator of the training set. |
hyperPar | - The hyperparameters. |
◆ train() [2/2]
Trains the network using the training set passed as input.
- Parameters
-
trainingSet | - The training set. |
testSet | - The test set. |
trainEst | - The Estimator for the training set. |
testEst | - The Estimator for the test set. |
hyperPar | - The hyperparameters. |
The documentation for this class was generated from the following files: